
Interactive Paths Embedding for Semantic Proximity Search on
Heterogeneous Graphs

Zemin Liu
Zhejiang University

China
liuzemin@zju.edu.cn

Vincent W. Zheng∗
Advanced Digital Sciences Center

Singapore
vincent.zheng@adsc-create.edu.sg

Zhou Zhao
Zhejiang University

China
zhaozhou@zju.edu.cn

Zhao Li, Hongxia Yang
Alibaba Group

China
{lizhao.lz,yang.yhx}@alibaba-inc.com

Minghui Wu
Zhejiang University City College

China
mhwu@zucc.edu.cn

Jing Ying
Zhejiang University

China
yingj@zucc.edu.cn

ABSTRACT
Semantic proximity search on heterogeneous graph is an impor-
tant task, and is useful for many applications. It aims to measure
the proximity between two nodes on a heterogeneous graph w.r.t.
some given semantic relation. Prior work often tries to measure
the semantic proximity by paths connecting a query object and a
target object. Despite the success of such path-based approaches,
they often modeled the paths in a weakly coupled manner, which
overlooked the rich interactions among paths. In this paper, we
introduce a novel concept of interactive paths to model the inter-
dependency among multiple paths between a query object and a
target object. We then propose an Interactive Paths Embedding
(IPE) model, which learns low-dimensional representations for the
resulting interactive-paths structures for proximity estimation. We
conduct experiments on seven relations with four different types
of heterogeneous graphs, and show that our model outperforms
the state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies → Statistical relational learn-
ing;

KEYWORDS
Semantic Proximity Search; HeterogeneousGraph; Interactive Paths
Embedding

ACM Reference Format:
Zemin Liu, Vincent W. Zheng, Zhou Zhao, Zhao Li, Hongxia Yang, Minghui
Wu, and Jing Ying. 2018. Interactive Paths Embedding for Semantic Proxim-
ity Search on Heterogeneous Graphs. In KDD ’18: The 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, August

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219953

Alice
(user)

Bob
(user)

UCLA
(college)

Emily
(user)

Frances
(user)

L.A.
(location)

Microsoft
(employer)

Chris
(user)

Google
(employer)

Donna
(user)

Glen
(user)

LinkedIn
(employer)

MIT
(college)

(a) An example of heterogeneous graph extracted from Facebook.

Emily Chris Google Donna LinkedIn

Emily Google Donna Glen

Emily Google Donna Glen MIT

p1:

p2:

p3:

(b) Interdependence among multiple object paths from Donna to Emily.

Figure 1: Semantic proximity search. Best view in color.

19–23, 2018, London, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3219819.3219953

1 INTRODUCTION
Semantic proximity search is an important task on many real-world
heterogeneous networks [9, 34]. It takes an object in the network
as the query, and ranks the other objects according to a semantic
relation. Consider the network in Fig. 1(a). The different ways that
how two objects are connected imply different kinds of semantic
relations. For example, Alice and Bob both attend UCLA, thus they
are schoolmates; whereas Donna and Chris both work for Google ,
thus they are colleagues. Given this semantic difference, we can
then take any user object (e.g., Alice) as a query, and ask “who
are likely to be her schoolmates?” As the answer, we shall have
Bob rank higher than the other user objects. Such object ranking
empowers many applications; e.g., recommending connections in a
professional network such as LinkedIn, categorizing friends in a
social network such as Facebook, discovering advisors/advisees in
a bibliography network such as DBLP, and linking user identities
in an e-commerce network such as Taobao.

Semantic proximity search on heterogeneous graphs is a chal-
lenging task, because the semantic relations may not be always ex-
plicit (e.g., advisor/advisee relations are not stated in DBLP) and the

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1860

https://doi.org/10.1145/3219819.3219953
https://doi.org/10.1145/3219819.3219953

heterogeneous network often has missing links among the objects
(e.g., users do not often update their affiliations in LinkedIn). Prior
work often tries to measure the semantic proximity by paths con-
necting a query object and a target object [1, 14, 32]. Meta-Path Prox-
imity (MPP) counts the number of meta-path (e.g., “user-employer-
user”)[34] instances between the query and the target to measure
the proximity w.r.t. certain semantic relation (e.g., colleague). Path
Ranking Algorithm (PRA) [17] first enumerates bounded-length
(relation) path patterns; then it recursively defines a score for each
path pattern; finally, for a target object, its proximity to the query
object is computed as a linear combination of its corresponding path
instances. Recent work starts to exploit learning representations
for the paths between a query object and a target object, and then
using them for proximity estimation. For example, ProxEmbed [22]
first samples a number of paths from the query object to the target
object, and then uses a recurrent neural network to embed each
path as a vector; finally it aggregates multiple paths’ embedding
vectors for proximity estimation.

We find that, despite the success of the path-based approach, the
paths are often weakly coupled in the modeling. That is, these paths
are usually modeled separately, and only at the final stage their
outputs (e.g., PRA’s path score, or ProxEmbed’s path embedding) are
aggregated for further computation. Such weak coupling hinders
the paths from getting a more complete picture of the connecting
structure between the query object and the target object. To help
concretely understand why the interdependence among paths is
useful, let us consider an example in Fig. 1(b). There are three
object paths p1,p2 and p3 sampled from the heterogeneous graph
in Fig. 1(a). Each path alone captures partial semantics of the whole
graph; e.g.,p1 is unaware ofDonna alsoworking forGoogle , whereas
p2 is unaware of Emily working for Google either. If we are able
to consider all the paths in a deeper manner, instead of modeling
each independently, we have a better chance to infer that Donna
and Emily are in fact colleagues.

In this paper, we introduce a novel concept of interactive paths
to model the interdependence among multiple paths between a
query object and a target object. With this concept, we wish to
strongly couple the paths by adding dependencies among the ob-
jects in different paths. The interdependence among paths is the
connections that lost in each single path, but could be extracted
from the original graph structure to enrich the interactions among
paths. The interactions facilitate the modeling for each independent
path, because each path could obtain extra structure information
from the interactions with other paths. Consider the example in
Fig. 1(b). For Google in p1, we wish to take into account its pre-
decessors in p2 and p3, which are Donna and Glen respectively.
Denote an object v in a path p as (p : v). We add directed edges
from (p2 : Donna) and from (p3 : Glen) to (p1 : Google). In this
way, (p1 : Google) sees a bigger picture of how different users in
Fig. 1(b) connect to it. Similarly, we can introduce dependencies
for the other objects in the paths. As a result, we obtain a set of
directed edges linking the paths in Fig. 1(b); for brevity, we skip the
directed edges for Emily. We call these linked paths as “interactive
paths”. Our goal is to embed each of these interactive paths into
a low-dimensional vector, such that all these vectors together can
well capture the semantic relation between Donna and Emily.

Embedding interactive paths is non-trivial. Few methods model
path interdependencies, and most of them are not designed for mod-
eling more than two paths at a time. For example, Word-to-Word
Attention LSTM [30] uses two LSTMs to recognize textual entail-
ment between a premise and a hypothesis; each word in the premise
depends on all the other words in the hypothesis, and vice versa.
Coupled-LSTM [20] establishes a subsequence-to-subsequence in-
terdependency between two paths, and employs a grid architecture
for embedding. It is not clear how to generalize their models to
handle multiple paths, since the generalization complexity scales
quickly. We will elaborate this in Sect. 2. On the other hand, the
interactive paths result in a complex directed graph with possible
cycles, which presents a challenge of how to learn this structure
and output embedding for each path therein. In general, cycles in a
graph structure are not desired. For example in Fig. 1(b), there is a
cycle between (p2 : Google) and (p3 : Glen). It makes the reachabil-
ity fromDonna to Emily become lower, thus weaker to explain their
relation. Besides, cycles are not preferred in inference by probabilis-
tic graphical models [16]. Therefore, we should try to avoid cycles
in the interactive paths. But this does not mean that we can remove
as many path interdependencies as possible; instead, we should
also avoid losing much information about these interdependencies.
Once having a cycle-free structure for the interactive paths, we also
need to consider what unique task characteristics we can exploit to
generate meaningful path embedding.

We propose a novel Interactive Paths Embedding (IPE) model to
address the above challenges. In particular,

• We construct the interactive paths with an inference-friendly
structure, by a cycle-free shuffling mechanism. We are inspired
by DAG-LSTM [43] to first introduce all the possible interdependen-
cies among paths, and then apply a highly efficient cycle removal
algorithm on the interactive paths. To minimize information loss
due to cycle removals, we shuffle the order of paths to remove cy-
cles, so that every time we will remove different cycles. As a result,
we generate multiple interactive-paths structures.

• We embed each interactive-paths structure, by an interactive
GRU mechanism. We use a Gated Recurrent Unit (GRU) architec-
ture [5] to model each path, and allows each GRU to model the in-
terdependencies from the other GRUs. Specifically, we exploit three
unique task characteristics for modeling the interdependencies:
1) path heterogeneity: for (p1 : Google), its own path predecessor
(p1 : Chris) may contribute differently with its other path prede-
cessors (p2 : Donna) and (p3 : Glen) to p1’s embedding, due to the
path semantic differences; 2) distance awareness: for (p1 : Google),
its predecessor (p2 : Donna) leads to a shorter walk from the query
to it (i.e., Donna → Google) than another one (p3 : Glen) (i.e.,
Donna → MIT → Glen → Google). In practice, shorter paths are
more expressive, hence (p2 : Donna) should contribute more than
(p3 : Glen); 3) node heterogeneity: for (p1 : Emily), its predecessor
(p1 : Google) indicates a working relation, whereas (p2 : Glen)
indicates a friend relation. These two predecessors may contribute
differently if the task is to find who is Donna’s colleague.

Finally, we aggregate all the interactive-paths structure embed-
ding output as a single vector, and use it for proximity estimation
w.r.t. a semantic relation. As we shall elaborate more in Sect. 2 and

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1861

Sect. 7, our concept of interactive paths and design of IPE are both
novel and effective. We summarize our contributions as follows.
• We introduce a novel concept of interactive paths to strongly
couple the paths for semantic proximity search.
•We propose a novel IPE model, which uses cycle-free shuffling
mechanism to construct the interactive paths, and an interactive
GRU mechanism to effectively embed the interactive paths.
•We evaluate IPE on seven semantic relations from four data sets,
and show it outperforms the state-of-the-art baselines.

2 RELATEDWORK
For semantic proximity search, earlier work such as Personalized
PageRank [14] measures the proximity from a query node to a
target node by random walk; but it only considers homogeneous
graphs. Supervised Random Walk (SRW) [1] can be applied to
heterogeneous graph; it tries to bias the random walk starting
from the query node, such that relevant nodes w.r.t. a semantic
relation are ranked higher than irrelevant ones. Both MPP [34] and
PRA [17] count instances of certain path patterns between two
objects to measure their proximity. PRep [32] considers path-based
relevance from a probabilistic perspective. Recent work exploits
graph embedding for semantic proximity search. Usually, graph
embedding focuses on generating a low-dimensional vector for
each node [3]. Examples include DeepWalk [28], node2vec [12],
metapath2vec [7], struct2vec [29], GraphSAGE [13], EP [10] and
more [4, 6, 21, 23, 26, 27, 40]. To use node embedding for semantic
proximity search, one approach is to combine two node embedding
vectors and turn the output into a proximity score. ProxEmbed
[22] shows that such an approach is indirect; instead, it directly
embeds each connecting path between two nodes into a vector, and
aggregates multiple paths for a proximity score. Although the path-
based approach is natural for modeling proximity between two
possibly distant nodes, the above methods tend to weakly couple
the paths in modeling.

Some pioneer work has explored path interdependencies. In ad-
dition to Word-to-Word Attention LSTM [30] and Coupled-LSTM
[20], DF-LSTM [19] also models sentence-to-sentence level inter-
dependency for text semantic matching. However, these methods
are designed to handle two paths at a time. In our task, we have
multiple interactive paths. If we apply these methods on every two
possible paths, we still limit ourselves to only seeing two paths at
a time in embedding. On the other hand, if we choose to directly
extend their methods to more than two paths, we are likely to suffer
from high generalization complexity. For example, Coupled-LSTM
requires maintaining a 3D tensor of size l1 × l2 × d , where l1 and l2
are the lengths of two paths respectively, d is the embedding dimen-
sion. Extending this tensor to include more paths can substantially
increase the complexity of computation and storage. Comparatively,
in IPE, we carefully construct the inference-friendly interactive-
paths structure based on the network topology, and enable multiple
GRUs to run simultaneously and interactively. Despite some high-
level similarity with multi-task sequence-to-sequence learning [24],
our IPE does not require the paths to exist explicit many-to-one,
one-to-many or many-to-many correspondence; besides, our IPE
enforces object-level interdependencies, whereas the multi-task
setting only considers sequence-level interdependencies.

Table 1: Notations used in this paper.

Notation Description
G , V , E , C Graph G , nodes V , edges E , node types C
i(q , v) An interactive-paths structure between q and v
I(q , v) Set of interactive-paths structures between q and v
D, m Set of training tuples, # of training tuples
P Set of sampled paths on G

g(q , v) Embedding vector of a path between q and v within an i(q , v)
o(q , v) Embedding vector of an interactive-paths structure i(q , v)
f(q , v) Proximity embedding vector between q and v
π (q , v) Proximity score between q and v
ℓ, ζ # of sampled paths for each node, walk length ζ
d , d ′ Embedding dimension, interactive GRU input feature dimension
α , β Hyper-parameters for path heterogeneity & distance awareness
λ Hyper-parameter for model regularization
Rj Set of predecessors for node j in an interactive-paths structure

As single path has limited expressiveness, some recent work
also exploits higher-order subgraph structures for semantic prox-
imity search. For example, Meta-graph Proximity (MGP) [9] first
mines the frequent subgraph patterns as meta-graphs (e.g., “user–
employer & location–user”); then it counts the instances of certain
meta-graphs between two objects to measure their proximity. Al-
though meta-graphs are powerful, frequent subgraph mining can
be challenging [38]. In practice meta-graphs’ sizes are small, which
limits the performance too. Some other work considers embedding
with trees [8, 35] or directed acyclic graphs (DAGs) [33, 43]. They
are not designed for path embedding; besides, they are often not
easily adaptable to our task, due to their highly customized design.
Finally, it is worth mentioning some related, yet different concepts.
Grid-LSTM [15] and Multidimensional-RNN [11] are designed for
multidimensional data, instead of multiple paths. Graph kernels
[6, 42] measure similarity between graphs via substructures, but
they are not designed for embedding multiple paths. Knowledge
graph embedding, such as TransE [2], TransH [41], ProjE [31] and
TransNet [37], considers a special type of heterogeneous graphs.
The knowledge graphs consist of (entity, relation, entity) triple facts.
The typical goal of knowledge graph is to learn the embedding for
entities and relations, such that for each tuple, adding the head en-
tity’s embedding and the relation’s embedding in some way equals
the tail entity’s embedding. Such triple facts do not exist in our
data, hence we cannot apply knowledge graph embedding.

3 PROBLEM FORMULATION
We first introduce terminologies and notations (listed in Table 1).

Definition 3.1. Aheterogeneous graph isG = (V , E,C , τ), where
V is a set of nodes, E is a set of edges, C = {c1, ..., cK } is a set of
distinct types, and τ : V → C is a node type mapping function.

For example, in Fig. 1(a), we have C = {“user”, “college”, “lo-
cation”, “employer”}, and τ (Donna) = “user”, τ (MIT) = “college”,
τ (Google) = “employer”, and τ (L.A.) = “location”.

Definition 3.2. A path on G is a sequence of nodes v1 → v2 →
...→ vt , where each vi ∈ V , and t is the path length.

For example, in Fig. 2, given a query node q and a target node v,
we sample a set of paths from q to v, and also from v to q.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1862

Heterogeneous graph

(a)

q

q
q

q

q

v

v
v

v

v

q

q

q

q

q

v

v

v

v

v

Sy
m

m
et

ric

re
la

tio
n

A
sy

m
m

et
ric

re

la
tio

n

Pr
ox

im
ity

 E
m

be
dd

in
g

f(
q,

v)

(b)

(c)

Pr
ox

im
ity

 S
co

re

R
an

ki
ng

 lo
ss

(d)

Sampled paths

Interactive-paths structure

Figure 2: The overall framework of IPE: (a) sample paths
P(q,v) from G; (b) use cycle-free shuffling to construct
interactive-paths structures I(q,v) from P(q,v); (c) use inter-
active GRU to compute embedding f(q,v) for each (q,v); (d)
compute ranking loss based on proximity score π (q,v).

Definition 3.3. An interactive-paths structure i(q,v) between
two nodes q,v ∈ V is a directed acyclic graph (DAG) consisting of
multiple interdependent paths.

For example, after Fig. 2(b), we get two interactive-paths struc-
tures, which are DAGs consisting of multiple interdependent paths
fromq tov and fromv toq respectively.We denote a set of interactive-
paths structures between q and v as I(q,v).

Problem inputs and outputs. For inputs of our model, we have a
heterogeneous graphG , and a set of training tuplesD = {(qk ,ak ,bk) :
k = 1, ...,m}, where for each query node qk , node ak is closer to
qk than node bk . Generation of these training tuples is discussed in
Sect. 7. Besides, we also offline sample some paths fromG as inputs.
We take a similar approach as DeepWalk [28] for path sampling.
Specifically, starting from each node in G, we randomly sample ℓ
paths, each of length ζ . As a result, we obtain a set of paths, denoted
as P. These paths will be indexed to support efficient training and
testing. For each query node q ∈ {q1, ...,qm } and a correspond-
ing target node v ∈ {a1, ...,am ,b1, ...,bm }, we extract multiple
subpaths from P. We denote all the subpaths starting from q and
ending at v in P as P(q,v), and those from v to q as P(v,q). For the
paths in P(q,v), we use cycle-free shuffling mechanism to construct
a set of interactive-paths structures I(q,v). Similarly, we construct
I(v,q) from P(v,q). We introduce the details of construction in
Sect. 4.

For outputs of our model, given a specific interactive-paths struc-
ture i(q,v) constructed from the paths in P(q,v), we first compute
a low-dimensional vector g(q,v) ∈ Rd for each path. Here, d > 0
is the embedding dimension. As there are multiple paths in i(q,v),

we will aggregate multiple g(q,v)’s into a interactive-paths struc-
ture embedding vector o(q,v) ∈ Rd . Finally, as there are multiple
interactive-paths structures in I(q,v), we will again aggregate mul-
tiple o(q,v)’s into a proximity embedding vector f(q,v) ∈ Rd . In
this work, we consider both symmetric and asymmetric relations,
where for symmetric relations f(q,v) = f(v,q) and for asymmetric
ones f(q,v) , f(v,q). We discuss how to compute g(q,v), o(q,v)
and f(q,v) by an interactive GRU model in Sect. 5. In the end, we
use f(q,v) to estimate a proximity score between q and v as

π (q,v) = θT f(q,v), (1)

where θ ∈ Rd is a parameter vector.
Our model has two types of parameters: 1) the interactive GRU

parameters for getting g(q,v), o(q,v) and f(q,v); 2) the proximity
estimation parameter θ . In training, we aim to learn these model
parameters, such that π (qk ,ak) ≥ π (qk ,bk) for each (qk ,ak ,bk) ∈
D. We will introduce the details of training algorithm in Sect. 6.
Note that in offline training, we only need to compute g(q,v), o(q,v)
and f(q,v) for those (qk ,ak) and (qk ,bk) for k = 1, ...,m, instead
of all the possible node pairs inG . In online testing, given a random
query nodeq inG , we will leverage the offline indexing to efficiently
extract from P a set of sample paths from q to each possible target
node v inG . Then we construct a set of interactive-paths structures,
and apply our model to compute each π (q,v) for ranking.

4 INTERACTIVE PATHS CONSTRUCTION
We introduce how to construct an interactive-paths structure by a
cycle-free shuffling mechanism from multiple paths from a query
node q to a target node v.

Overviewof cycle-free shuffling. Givenmultiple paths, we choose
to first add interdependencies with directed edges among the paths,
which leads to a directed graph. Then we try to remove the pos-
sible cycles in the directed graph, by an efficient graph traversal
algorithm. Because there are many possible ways to remove cycles
from a directed graph, we use certain path ordering to decide which
directed edge to remove first. As a result, we can shuffle the paths
with different orderings, and thus generate multiple interactive-
paths structures. In this way, we avoid the information loss due to
the cycle removal. Next, we introduce two major components of
this cycle-free shuffling mechanism, including “adding interdepen-
dencies” and “removing cycles”, by examples.

Adding interdependencies. Consider Fig. 3(a)(1), where we have
three paths from q to v, i.e., P(q,v) = {p1,p2,p3}. We first scan all
the paths, and identify all the nodes that have multiple predecessors.
As a result, we find v, b and a (colored in purple). Then, we traverse
each path p ∈ P(q,v). For each node u with multiple predecessors
in p, we add u’s predecessors from the other paths as the interde-
pendencies. Take path p1 as an example. As shown in Fig. 3(a)(2),
we only have one node with multiple predecessors, i.e., v (colored
in blue). Then we add directed edges from (p2 : a) and (p3 : b) to
(p1 : v). After this, we move on to path p2. As shown in Fig. 3(a)(3),
we have three nodes with multiple predecessors, i.e., b, a and v

(colored in yellow). Then, for b we add directed edges from (p3 : a)
to (p2 : b); for a, we add directed edges from (p3 : q) to (p2 : a); for v,
we add directed edges from (p1 : e) and (p3 : b) to (p2 : v). Similarly,

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1863

q a b

q b c a

v

v

(1)

1p

2p

3p

q e v

q a b

q b c a

v

v

(2)

1p

2p

3p

q e v

q a b

q b c a

v

v

(3)

1p

2p

3p

q e v

q a b

q b c a

v

v

(4)

1p

2p

3p

q e v

q a b

q b c a

v

v

(5)

1p

2p

3p

q e v

(a) Add interdependencies among paths.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

q a b

q b c a

v

v

1p

2p

3p

q e v

1 2

3

4

5 6

7 8

1 2

3

4

5 6

7 8 9
10

11

12

(b) Remove possible cycles to form an interactive-paths structure.

Figure 3: Interactive paths construction. Best view in color.

we can add directed edges for path p3 in Fig. 3(a)(4). Finally, we
obtain a directed graph with possible cycles in Fig. 3(a)(5).

Complexity analysis: suppose the average length of a path in
P(q,v) is l . Traversing the paths to find nodes with multiple prede-
cessors takes O(|P(q,v)|l). Adding interdependencies for all nodes
takes O(|P(q,v)|2l). In total, the complexity to add interdependen-
cies for P(q,v) is O(|P(q,v)|l + |P(q,v)|2l) = O(|P(q,v)|2l).

Removing cycles. As highlighted in Fig. 3(b)(1), the resulting di-
rected graph of Fig. 3(a)(5) has a cycle among a, b and c (colored
in red). To remove this cycle, we traverse each path according to
a fixed ordering, e.g., first p1 then p2 then p3. We will only visit a
node if its predecessors are already visited. We mark the already
visited node as green color. Whenever we find no more node to
continue visiting, yet still having unvisited nodes, we encounter
a cycle. Then we will remove a directed edge to avoid the cycle.
We use a variable r = 0 to record the consecutive times that we
jump from one path to another. Let us start traversing from q in p1.
As shown in Fig. 3(b)(2), (p1 : q) has no predecessor, after visiting
it we mark it as green and setting r = 0. We continue traversing
on p1, and similarly we mark (p1 : e) as green in Fig. 3(b)(3) and
set r = 0. Then we reach (p1 : v), which depends on (p2 : a) and
(p3 : b), both unvisited yet. In this case, we cannot finish visiting
(p1 : v). Instead, we move on to traverse p2 and set r = r + 1 = 1 to
record we have a jump. Once visiting (p2 : q), we mark it as green
in Fig. 3(b)(4), and set r = 0 because the jump continuity has been
broken. Then we reach (p2 : b), which depends on (p3 : a). Since
(p3 : a) is not visited yet, we jump to p3 with setting r = r + 1 = 1,
and visit (p3 : q) as shown in Fig. 3(b)(5). After visiting (p3 : q) with
setting r = 0, we try to visit (p3 : a), but it has unvisited prede-
cessor (p2 : c) then we set r = r + 1 = 1 and jump to p1. It is the
same way to visit the paths, until we jump to p3 again with r = 3
and r > |P(q,v)|, meaning we have jumped 3 times continuously

without visiting any nodes. Now we know that we have no more
nodes to continue visiting, although there are still many unvisited
nodes. This is due to the cycle among a, b and c in p2 and p3. To
avoid this cycle, we remove all the cross-path predecessors of the
current node in traversal, which is (p3 : a) in this case. That is,
we remove the directed edges from (p2 : c) to (p3 : a). After the
cycle is removed, we are able to visit (p3 : a) in Fig. 3(b)(6). We can
continue to visit the remaining nodes in Fig. 3(b)(7–10). In the end,
we obtain a cycle-free interactive-paths structure. Note that, if the
paths are ordered differently, we will get different interactive-paths
structures. To minimize information loss, we shuffle P(q,v) for
multiple times, and generate multiple interactive-paths structures
I(q,v).

Complexity analysis: suppose the average number of predeces-
sors for each node is s . To visit a node in a path, we need to check
whether its s predecessors are already visited, which takes O(s).
The worst situation is that at each node we need to remove cy-
cles, and we need to access the current nodes in all the paths un-
til r > |P(q,v)|. So for each node, the worst time complexity is
O(|P(q,v)|s). In total, there are |P(q,v)|l nodes, the total complex-
ity is O(|P(q,v)|2ls).

Interactive paths construction algorithm.We abstract the above
approach of adding interdependencies and removing cycles in Alg. 1.
Given (q,v), we run Alg. 1 for several times to generate multiple
interactive-paths structures. In line 2, we shuffle the paths order.
Lines 3-5 are to add interdependencies among paths and its time
complexity is O(|P(q,v)|2l). Lines 6-21 are to remove cycles and
its time complexity is O(|P(q,v)|2ls). In total, the complexity for
Alg. 1 is O(|P(q,v)|2l + |P(q,v)|2ls)=O(|P(q,v)|2ls).

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1864

Algorithm 1 Interactive-Paths Structure Construction

Require: graph G = (V , E,C , τ), a set of paths P(q,v),
Ensure: interactive-paths structure i(q,v).
1: initialize r = 0, finished paths set S = ∅, i(q,v) = P(q,v);
2: Shuffle(P(q,v));
3: for all path p ∈ P(q,v) do
4: append(i(q,v), interdependencies from the other paths to p);
5: end for
6: while |P(q,v)| , |S | do
7: for all path p ∈ {P(q,v) − S} do
8: if r > |P(q,v)| − |S | then
9: remove(i(q,v), p.curNode .dep);
10: end if
11: if p.curNode .dep = ∅ or p.curNode .dep traversed then
12: traverse p.curNode; r = 0;
13: p.curNode = p.curNode .next ;
14: else
15: r = r + 1; continue;
16: end if
17: if p.curNode = null then
18: append(S , p);
19: end if
20: end for
21: end while
22: return i(q,v).

5 INTERACTIVE PATHS EMBEDDING
We introduce how to model multiple interactive-paths structures
I(q,v) for embedding. To model the recurrent nature of the interac-
tive paths and meanwhile deal with the interdependencies among
the paths, we develop an interactive GRU mechanism.

Interactive GRU. We use Fig. 3(b)(10) as an example to overview
the architecture of our interactive GRU. As shown in the left hand
side of Fig. 4, we do recurrent embedding for each node along path
p2 with both its own features and its predecessors. We denote a
node v’s features as xv ∈ Rd

′

, and we define it as a concatenation
of: 1) node type, which is a |C |-dimension vector, with only the
dimension that corresponds to v’s type as one and the others as
zeros; 2) node degree, which is the v’s degree inG; 3) neighbors’ type
distribution, which is a K-dimension vector, with each dimension
as the logarithm number of v’s neighbors of one type; 4) neighbors’
type entropy, which is the entropy of the type distribution for v’s
neighbors. For example, to embed node v in p2, we need to consider
its input features xv and the embedding vectors of its same-path
predecessor a, as well as different-path predecessors e and b.

Next, we introduce each computation units in interactive GRU.
• Hidden state for input: for a node j, it takes the hidden states
of its multiple predecessors as input. Denote the set of predecessors
of node j as Rj ; e.g., in Fig. 3(b)(10), R(p2:v) = {(p2 : a), (p1 : e), (p3 :
b)}. For different predecessors, we consider them as contributing
differently according to three unique task characteristics.
1) Path heterogeneity: depending on whether a predecessor comes
from the same path as node j, we assign different weights. Denote
Rsame
j as the set of j’s predecessors from the same path as j , whereas

q a b

q b c a

q e v

v

v

q b c a v

axqx bx cx vx
qa

e

b

qh bh ch ah vh
max-pooling

2g
1g

2g

3gb

v

v

Figure 4: The interactive GRU architecture.

Rdiffj as the set of predecessors from different paths as j’s; e.g., in
Fig. 3(b)(10), Rsame

(p2:v)
= {(p2 : a)} and Rdiff(p2:v) = {(p1 : e), (p3 : b)}.

2) Distance awareness: we differentiate the predecessors based on
their distances to the start node in their own paths. For example, in
Fig. 3(b)(10), (p2 : a)’s distance to the start node in p2 is 3, whereas
(p1 : e)’s distance to the start node in p1 is 1. Both of them are
predecessors of node (p2 : v). Generally, the larger the distance is,
the weaker the connection is.
3) Node heterogeneity: we also differentiate the predecessors based
on their node types, as different types imply different semantics.

Denote the embedding of a node k as hk ∈ Rd . For path hetero-
geneity, we introduce a hyper-parameter α ∈ [0, 1] as the weight
for a same-path predecessor, and use (1 − α) as the weight for a
different-path predecessor. For distance awareness, we denote node
k’s distance to the start node in its own path as k .dist . For node
heterogeneity, we denote tk ∈ {0, 1} |C | as one-hot type indicator
vector for node k . Finally, we aggregate the predecessor embedding
from Rj by max pooling, as the input for node j:

hRj =maxPool({ĥk · e
−β×k .dist · σ (ηT tk) : k ∈ Rj }), (2)

where each path discounted predecessor embedding

ĥk =

{
αhk , for k ∈ Rsame

j ,

(1 − α)hk , for k ∈ Rdiffj ,
(3)

β > 0 is a distance discount hyper-parameter, σ (x) = 1/(1+ e−x) is
a sigmoid function, and η ∈ R |C | is a node type hyper-parameter
vector.
• Reset gate: for node j, the reset gate is defined as

rj = σ (Wr xj +Ur hRj + br), (4)

whereWr ∈ R
d×d ′ ,Ur ∈ Rd×d and br ∈ Rd are the parameters.

• Update gate: for node j, the update gate is defined as

zj = σ (Wzxj +UzhRj + bz), (5)

whereWz ∈ R
d×d ′ ,Uz ∈ Rd×d and bz ∈ Rd are the parameters.

• Temporary hidden state: it is defined as

h̃j = tanh(Whxj +Uh [rj ⊙ hRj] + bh), (6)

whereWh ∈ R
d×d ′ ,Uh ∈ Rd×d and bh ∈ Rd are the parameters, ⊙

is an element-wise multiplication.
• Output hidden state: we compute the embedding for node j as

hj = (1 − zj) ⊙ hRj + zj ⊙ h̃j , (7)

where ⊙ is an element-wise multiplication.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1865

r
z

IN

eh
eh~

ex node eFea.

ax node aFea.

bx node bFea.

w

w

w

w

vx node vFea.

Weight assign function

m Max-pooling

m

Cha.

Cha.

Cha.
Feature vectorFea.

Cha. Characteristics

e

a

b

v
r

z

IN

ah
ah~

r
z

IN

bh
bh~

r
z

vh
vh~ OUT

Figure 5: Interactive GRU units to aggregate predecessors
{e ,a,b} with weights for a target node v’s embedding.

In all, we use node (p2 : v) in Fig. 3(b)(10) as an example, to
visualize the above interactive GRU units in Fig. 5. Once obtaining
the embedding (i.e., hidden state) for each node j in i(q,v), we
compute the path embedding for each path p ∈ i(q,v) as

gp =maxPool({hk : k ∈ p}), (8)

where k is a node in path p. After that, we calculate the interactive-
paths structure embedding for i(q,v) as

oi(q ,v) =maxPool({gp · e−β×p .lenдth : p ∈ i(q,v)}), (9)

where p.length is the length of path p. Generally, the longer a path
is, the weaker relation it describes. Finally, we aggregate multiple
interactive-paths structures I(q,v) as

ôI(q ,v) =maxPool({oi(q ,v) : i(q,v) ∈ I(q,v)}). (10)

Denote ϒ(q,v) as all the interactive-paths structures for (q,v),
where for asymmetric we have ϒ(q,v) = I(q,v), for symmetric
relation we have ϒ(q,v) = I(q,v) ∪ I(v,q). Therefore, we compute
the proximity embedding for (q,v) as

f(q,v) =maxPool({ôI(q ,v) : I ∈ ϒ(q,v)}). (11)

6 END-TO-END TRAINING
For each training tuple (qk ,ak ,bk), we obtain a loss function as

ℓ(qk ,ak ,bk) = −σ [π (qk ,ak) − π (qk ,bk)], (12)

where π (q,v) is defined in Eq. 1. Denote the set of IPE parame-
ters as Θ = {θ ,Wr ,Ur , br ,Wz ,Uz , bz ,Wh ,Uh , bh }. We learn Θ by
minimizing

L(Θ) =
∑m
i=k ℓ(qk ,ak ,bk) + λΩ(Θ) (13)

where Ω is a regularization function (e.g., the sum of each IPE
parameter’s l2-norm), and λ > 0 is a hyper-parameter.

We summarize IPE in Alg. 2. Line 1 is to sample paths by random
walk. Line 2 constructs interactive-paths structures from these
sampled paths. Line 3 splits all the training tuples into batches.
Lines 4–13 optimize Θ with the training tuples via end-to-end
training, where lines 7–8 computes the proximity embedding for
each (q,v), line 9 accumulates the loss and line 12 optimizes Θ.

Complexity analysis. At line 1 of Alg. 2, we sample ℓ paths with
length ζ for each node, hence the complexity is O(|V |ℓζ). At line 2,

Algorithm 2 Interactive-Paths Structure Embedding

Require: heterogeneous graph G = (V , E,C , τ), training tuples
D = {(qk ,ak ,bk)}, set of interactive-paths structures ϒ, em-
bedding dimension d , path discount α , distance discount β , #
of walks per node ℓ, walk length ζ .

Ensure: model parameters Θ.
1: P ← SamplePath(G , ℓ, ζ);
2: ϒ← GenerateInteractivePaths(P) by Alg.1;
3: B ← GenerateBatches(D);
4: for all batch in B do
5: Initialize loss as L = 0;
6: for all each (qk ,ak ,bk) in this batch do
7: f(qk ,ak) ← Embed(ϒ,qk ,ak ,d ,α , β) by Eq. 11;
8: f(qk ,bk) ← Embed(ϒ,qk ,bk ,d ,α , β) by Eq. 11;
9: L = L + ℓ(qk ,ak ,bk), based on Eq. 12;
10: end for
11: L = L + λΩ(Θ);
12: Update Θ based on L by stochastic gradient descent.
13: end for
14: return Θ.

constructing the interactive-paths structures for each (q,v) takes
O(|P(q,v)|2ls) as analyzed in Alg. 1. Here, l is the average length
of a path in P(q,v) and s is the average number of predecessors
for each node therein. Given m training tuples {(qi ,ai ,bi)}, the
total complexity for line 2 is O(m |P(q,v)|2ls). At lines 4–13, the
complexity to compute embedding for one interactive-paths struc-
ture is O(|P(q,v)|ls), hence the total complexity is O(m |P(q,v)|ls).
In all, the complexity of Alg. 2 is O(|V |ℓζ) + O(m |P(q,v)|2ls) +
O(m |P(q,v)|ls) = O(|V |ℓζ +m |P(q,v)|2ls). This complexity is lin-
ear to both the node size |V | and the number of training tuplesm;
it is quadratic to the average number of paths between q and v.

7 EXPERIMENTS
7.1 Datasets and Settings
Weused four different types of heterogeneous networks to construct
our datasets. Next we introduce each network, and summarize the
resulting datasets statistics in Table 2.
• Professional Network: we use one public dataset LinkedIn [18].
It was collected from LinkedIn, which is an online service for mem-
bers (both workers and employers) to create profiles and connec-
tions with each other. The LinkedIn network contains user, college,
employer and location.
• Social Network: we use one public dataset Facebook [25]. It was
collected from Facebook, which is an online service for members to
share information and connect with people they know. The Face-
book network contains user, work-project, hometown, work-location,
school, degree, last-name, employer, location and concentration.
• Bibliography Network: we use one public dataset DBLP [39].
It was collected from DBLP, which is an online reference for biblio-
graphic information on major computer science publications. The
DBLP network contains user, keyword, year, conference and paper.
• E-Commerce Network: we use one private dataset Taobao. It
was collected and provided by Taobao, a world-leading e-commerce

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1866

Table 2: Statistics of our four datasets.

|V | |E | |C |
Semantic Sym- Queries Results
relations metry per query

LinkedIn 65,925 220,812 4 school. yes 172 16.2
collea. yes 173 12.8

Facebook 5,025 100,356 10 family. yes 340 4.0
classmate yes 904 6.5

DBLP 165,728 928,513 5 advisor no 2,439 1.3
advisee no 1,024 2.6

Taobao 6,689,132 47,478,942 6 oneID yes 27,039 2.4

site. It records a week of user activity logs on mobile or PC in a city
of China. The Taobao network containsMID, PID, auction, shop and
keyword. Here, an MID is the identity of a mobile device used by
one Taobao user, whereas a PID is the identity of a PC device used
by one Taobao user. A user (i.e., MID or PID) can interact with IP,
auction, shop and keyword.

Ground truth. In LinkedIn, the user relationships were already
labeled into different types [18]. We consider two major semantic
relations: schoolmate and colleague. In Facebook, the user relation-
ships were defined by [9] as: family and classmate. In DBLP, the
adivsor and advisee in a co-author pair were identified by [39], based
on homepages of some faculty members, Mathematics Genealogy
and AI Genealogy projects. All unidentified co-author pairs were as-
sumed to be negative. In Taobao, we consider on semantic relation
of oneID. We labeled a pair of (MID, PID) as positive, if they refer
to one real world Taobao user; otherwise, we label it as negative.
To generate the candidate pairs of (MID, PID), we employed a set
of practical rules that are currently used in production at Taobao;
e.g., a PID and an MID must co-occur with the same IP(s), the same
router(s), and so on.

As summarized in Table 2, the advisor and advisee classes are
asymmetric, whereas the others are all symmetric.

Training and testing. On each graph, a user q can be used as a
query node if there exists at least another user v such that q and v
have the desired semantic relation in our ground truth. The number
of query users for each network and each type of semantic relations,
and the average number of results per query are shown in Table 2.
We randomly split these queries into two subsets: 20% reserved
as training and the rest as testing. We repeated such splitting for
10 times, and averaged any result over these 10 splits. In each
split, based on the training queries, we further generated training
examples (q,v,u) such that q and v belong to the desired semantic
relation whereas q andu do not. For testing, we constructed an ideal
ranking for each test query user and each desired semantic relation.
We compared this ideal ranking against the ranking generated by
various semantic user search algorithms. We adopted NDCG and
MAP [9] to evaluate the quality of ranking at the top 10 results.

Parameters and environment. We set λ = 0.0001, and tuned
the other hyper-parameters d , ℓ, ζ , α and β on each dataset. By
default, d = 100 in Taobao to handle its larger graph size, whereas
in LinkedIn, Facebook and DBLP we set smaller d for their smaller
graph size, e.g.for schoolmate we set d = 16. For fair comparison,
we sample paths from the heterogeneous graphs with the same
parameters setting in ProxEmbed[22]. Specifically, we set ℓ = 20,

ζ = 20 on LinkedIn and Taobao, whereas on Facebook we set ℓ = 40,
ζ = 80 for classmate and ℓ = 20, ζ = 80 for family. On DBLP, we
set ℓ = 20, ζ = 80 for advisor and ℓ = 20, ζ = 40 for advisee. α was
set in the range of [0.25, 0.75], whereas β was set in the range of
[0.1, 1.0]. We ran our experiments on Linux machines with 8-core
2.27GHz Intel Xeon(R) CPUs and 32GB memory. We use java-1.8
and Theano [36] for coding development.

Our implementation code for IPE is available1.

7.2 Performance Study
We compare our IPE with the following state-of-the-art baselines.
• SRW: Supervised Random Walk [1] learns edge weights to bias
random walk for consistent ranking results with the ground truth.
We define edge features as a vector based on its nodes’ types.
•DeepWalk: we applied [28] to embed the graph, and used aHadamard
product over two nodes’ embedding for proximity estimation.
• ProxEmbed: it [22] first samples multiple paths between two nodes,
then feeds these paths into LSTM to get the proximity embedding.
• Metapath2vec: it [7] samples paths w.r.t. meta-path patterns for
node embeddingwith heterogeneous skip-gram.We used aHadamard
product over two nodes’ embedding for proximity estimation. For
all the datasets, we used meta-path patterns of “user-item-user”,
“user-item-item-user” and “user-item-user-item-user”; e.g., in Taobao,
“user” is MID or PID, “item” is IP, auction, shop or keyword.
• DAG-LSTM: it [33] models each interactive-paths structure i(q,v)
as a DAG, and outputs an embedding vector for each end node v
in p ∈ i(q,v). We then max-pooled these outputs as an embedding
vector for i(q,v), and used it for proximity estimation.
• IPE-α : we designed a degenerated version of IPE without path
heterogeneity. We aggregated predecessors with equal weights.
• IPE-α-β : we designed a degenerated version of IPE without path
heterogeneity and distance awareness. We further set β = 0.
• IPE-α-β-η: we designed a degenerated version of IPE without
path heterogeneity, distance awareness and node heterogeneity.
We further ignored the node types in predecessor aggregation.

For fair comparison, we feed the same sampled paths to all the
baselines (e.g., DeepWalk, ProxEmbed, DAG-LSTM, and all the de-
generated versions of IPE). For the parameters in all the baselines,
we referred to their corresponding papers and further fine tuned
them on each dataset. For SRW, we set its regularization parameter
λ = 10, random walk teleportation parameter α = 0.2 and loss
parameter b = 0.1. For DeepWalk and metapath2vec, we set its
embedding dimension as 128, which gave good results in both their
papers [28] and our datasets. For DAG-LSTM, we set its embedding
dimention as 32 in all the datasets, as it gave the best results.

Comparison with baselines. In Table 3, we report the results
under different amounts of training tuples. We observe that, IPE
and its degenerated versions generally outperform the baselines.
Next, we analyze each baseline and compare it with IPE.

SRW generally has relatively lower performance than the other
methods, except on the advisee relation in DBLP. Compared with
other graph embedding methods, SRW seems not very good at
identifying useful graph patterns to help proximity search. Besides,
1https://github.com/shuaiokshuai/IPE

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1867

https://github.com/shuaiokshuai/IPE

Table 3: Result comparison under different amounts of labels. Highlighted results are significant.

Methods
LinkedIn Facebook DBLP Taobao

schoolmate colleague classmate family advisor advisee oneID
10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 10 100 1000 1K 10K 100K

N
D
C
G
@
10

SRW 0.520 0.515 0.515 0.513 0.502 0.503 0.396 0.389 0.394 0.396 0.389 0.394 0.689 0.689 0.689 0.402 0.402 0.402 - - -
DeepWalk 0.515 0.518 0.530 0.493 0.506 0.504 0.692 0.689 0.699 0.585 0.575 0.583 0.741 0.743 0.739 0.382 0.379 0.374 0.437 0.496 0.509
ProxEmbed 0.646 0.652 0.670 0.561 0.606 0.616 0.796 0.851 0.852 0.584 0.743 0.761 0.753 0.765 0.771 0.374 0.405 0.411 0.646 0.701 0.708

Metapath2vec 0.513 0.524 0.528 0.507 0.509 0.523 0.688 0.702 0.709 0.563 0.560 0.574 0.775 0.769 0.735 0.378 0.403 0.395 0.532 0.595 0.600
DAG-LSTM 0.612 0.638 0.633 0.480 0.576 0.584 0.396 0.656 0.743 0.481 0.663 0.701 0.704 0.758 0.787 0.366 0.385 0.408 0.682 0.704 0.710

IPE-α 0.657 0.674 0.674 0.636 0.626 0.641 0.823 0.831 0.816 0.739 0.758 0.761 0.726 0.703 0.792 0.378 0.403 0.423 0.699 0.718 0.732
IPE-α -β 0.642 0.647 0.666 0.607 0.596 0.621 0.481 0.616 0.794 0.463 0.731 0.768 0.683 0.649 0.743 0.362 0.363 0.402 0.685 0.713 0.725
IPE-α -β -η 0.640 0.641 0.655 0.588 0.604 0.556 0.443 0.535 0.625 0.494 0.663 0.762 0.681 0.679 0.717 0.369 0.370 0.399 0.692 0.706 0.715

IPE 0.667 0.683 0.684 0.607 0.641 0.645 0.593 0.856 0.857 0.673 0.767 0.768 0.704 0.782 0.788 0.368 0.419 0.425 0.696 0.726 0.736

M
A
P@

10

SRW 0.275 0.272 0.272 0.294 0.289 0.291 0.312 0.324 0.384 0.259 0.255 0.259 0.630 0.630 0.630 0.294 0.294 0.294 - - -
DeepWalk 0.393 0.391 0.398 0.363 0.369 0.368 0.578 0.575 0.587 0.467 0.455 0.463 0.663 0.659 0.656 0.263 0.264 0.257 0.337 0.395 0.407
ProxEmbed 0.535 0.541 0.562 0.443 0.492 0.503 0.735 0.801 0.803 0.498 0.678 0.711 0.672 0.690 0.701 0.251 0.283 0.297 0.522 0.593 0.601

Metapath2vec 0.394 0.395 0.396 0.375 0.378 0.390 0.572 0.589 0.595 0.435 0.436 0.441 0.691 0.683 0.649 0.259 0.281 0.275 0.431 0.497 0.502
DAG-LSTM 0.498 0.522 0.521 0.352 0.450 0.457 0.275 0.537 0.648 0.340 0.581 0.614 0.573 0.652 0.702 0.246 0.260 0.277 0.570 0.591 0.594

IPE-α 0.551 0.566 0.568 0.519 0.511 0.522 0.765 0.764 0.749 0.662 0.701 0.695 0.616 0.582 0.708 0.251 0.272 0.283 0.590 0.614 0.633
IPE-α -β 0.526 0.531 0.556 0.482 0.472 0.501 0.359 0.493 0.715 0.311 0.635 0.706 0.541 0.504 0.621 0.232 0.242 0.273 0.573 0.609 0.624
IPE-α -β -η 0.524 0.525 0.547 0.457 0.479 0.431 0.321 0.418 0.511 0.350 0.538 0.713 0.539 0.540 0.588 0.237 0.245 0.269 0.579 0.601 0.612

IPE 0.560 0.573 0.574 0.490 0.523 0.525 0.491 0.806 0.808 0.622 0.719 0.721 0.585 0.692 0.705 0.245 0.288 0.302 0.593 0.628 0.639

SRW tends to have a higher complexity, since in each step of its
gradient update, it does random walk over the whole graph. Hence,
we were unable to produce results within a reasonable time (e.g., a
week) on the Taobao dataset, which has millions of nodes.

DeepWalk has lower performance than ProxEmbed, DAG-LSTM
and IPE. As suggested in [22], using DeepWalk for proximity search
is an indirect approach. Comparatively, ProxEmbed, DAG-LSTM
and IPE all try to directly learn proximity embedding from the
connecting structure between two nodes.

Metapath2vec has a comparable performance with DeepWalk.
Surprisingly, it seems not to benefit much from its meta-path pat-
terns. This is possibly because the meta-path patterns are limited
and they have to be engineered, which are unlikely to be optimal.

The results of ProxEmbed show the usefulness of modeling paths
by deep learning for proximity search. As there is no interactions
among paths, only modeling these independent paths makes its
performance worse than IPE. Surprisingly, for DAG-LSTM, its DAG
structure seems not to help the prediction much. This is possibly
because the DAG structure does not take into account those distance
awareness and node heterogeneity issues into consideration.

Generally, IPE outperforms not only the competing baselines,
but also its degenerated version. It validates the effectiveness of our
modeling the interactive-paths structure. It also validates the need
to consider each task characteristics, including path heterogeneity,
distance awareness and node heterogeneity. It is worth noting
that, distance awareness appears to be critical for the performance,
as both IPE-α-β and IPE-α-β-η are significantly worse than IPE-
α . This is understandable that, in semantic proximity search, a
longer distance indicates a weak relation, thus likely to be noise in
prediction.

Parameter sensitivity. In Fig. 6, we report the IPE performances
w.r.t. its hyper-parameters, using 10K training tuples on Taobao
and 100 training tuples on the other datasets. Firstly, embedding
dimension d = 32 seems to achieve good results over LinkedIn,

Facebook and DBLP, whereasd = 128 gives better results on Taobao.
This difference is due to the fact that, Taobao network is much larger
than the other three networks, hence we need a higher dimension
for the embedding to capture enough information. Secondly, path
discount α tends to achieve the best results at different values on
different datasets. Empirically, we found that α ∈ [0.25, 0.75] often
gave good results. Finally, distance discount β is sensitive to the
performance, which shows the importance of distance discount in
the IPEmodel. It tends to achieve the best results when β ∈ [0.1, 1.0].
When β > 1, it over-penalizes the node distance and the path length
in interactive GRU. When β < 0.01, it underutilizes the distance
awareness.

8 CONCLUSION
In this paper, we studied the semantic proximity search task on het-
erogeneous graphs. The state-of-the-art usually took a path-based
approach, and measure the proximity between two nodes by their
connecting paths. Despite the success, the prior work often mod-
eled the paths separately, which overlooked the path interactions.
We proposed a novel concept of interactive paths to model the path
interdependencies, and designed a cycle-free shuffling mechanism
to efficiently construct interactive-paths structures from the of-
fline sampled paths. We further developed a novel interactive paths
embedding (IPE) framework, which used an effective interactive
GRU mechanism to learn a relation representation between two
nodes for proximity search. We tested IPE on four different types
of heterogeneous graphs, ranging from professional network to
e-commerce network. Our extensive results on seven different se-
mantic relations showed that, our IPE generally outperformed the
state-of-the-art baselines.

In the future, we plan to extend IPE to handle attributes and dy-
namics in heterogeneous networks for semantic proximity search.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1868

0.2 0.4 0.6 0.8
0.001

LinkedIn-schoolmate LinkedIn-colleague Facebook-classmate Facebook-family DBLP-advisor DBLP-advisee Taobao-oneID

0.2

0.4

0.6

0.8

1

8 16 32 64 128

N
D

C
G

d

0.1

0.3

0.5

0.7

0.9

8 16 32 64 128
M

A
P

d

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

N
D

C
G

α

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

M
A

P

α

0

0.2

0.4

0.6

0.8

1

0.0
01

0.0

1 0.1
 1 10

N
D

C
G

β

0

0.2

0.4

0.6

0.8

1

0.0
01

0.0

1 0.1
 1 10

M
A

P

β

Figure 6: Impact of hyper-parameters: embedding dimensiond , path discount α , distance discount β .

ACKNOWLEDGMENTS
We thank the support from: Zhejiang Science and Technology Plan
Project (No. 2015C01027); National Natural Science Foundation of
China (No. 61602405); National Research Foundation, Prime Minis-
ter’s Office, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme; and Alibaba
Innovative Research program.

REFERENCES
[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting

and recommending links in social networks. InWSDM. 635–644.
[2] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[3] HongyunCai, VincentWZheng, and Kevin Chang. 2018. A comprehensive survey
of graph embedding: problems, techniques and applications. IEEE Transactions
on Knowledge and Data Engineering (2018).

[4] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,
and Erik Cambria. 2017. Learning community embedding with community
detection and node embedding on graphs. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. ACM, 377–386.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[6] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data. In ICML. 2702–2711.

[7] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. InKDD. 135–144.

[8] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. 2016.
Recurrent Neural Network Grammars. In NAACL HLT. 199–209.

[9] Yuan Fang, Wenqing Lin, Vincent W Zheng, Min Wu, Kevin Chen-Chuan Chang,
and Xiao-Li Li. 2016. Semantic proximity search on graphs with metagraph-based
learning. In ICDE. 277–288.

[10] Alberto García-Durán and Mathias Niepert. 2017. Learning Graph Representa-
tions with Embedding Propagation. In NIPS. 5125–5136.

[11] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. 2007. Multi-
Dimensional Recurrent Neural Networks. CoRR abs/0705.2011 (2007).

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. 855–864.

[13] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS. 1025–1035.

[14] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.
271–279.

[15] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. 2016. Grid Long Short-Term
Memory. In ICLR.

[16] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles
and techniques. MIT press.

[17] Ni Lao and William W. Cohen. 2010. Relational retrieval using a combination of
path-constrained random walks. Machine Learning 81, 1 (2010), 53–67.

[18] Rui Li, Chi Wang, and Kevin Chen-Chuan Chang. 2014. User profiling in an ego
network: co-profiling attributes and relationships. InWWW. 819–830.

[19] Pengfei Liu, Xipeng Qiu, Jifan Chen, and Xuanjing Huang. 2016. Deep Fusion
LSTMs for Text Semantic Matching.. In ACL (1).

[20] Pengfei Liu, Xipeng Qiu, Yaqian Zhou, Jifan Chen, and Xuanjing Huang. 2016.
Modelling Interaction of Sentence Pair with Coupled-LSTMs. In EMNLP. 1703–
1712.

[21] Zemin Liu, Vincent W Zheng, Zhou Zhao, Hongxia Yang, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2018. Subgraph-augmented Path Embedding
for Semantic User Search on Heterogeneous Social Network. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 1613–1622.

[22] Zemin Liu, VincentWZheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan Chang,
Minghui Wu, and Jing Ying. 2017. Semantic Proximity Search on Heterogeneous
Graph by Proximity Embedding. In AAAI. 154–160.

[23] Zemin Liu, Vincent W Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2018. Distance-aware dag embedding for
proximity search on heterogeneous graphs. AAAI.

[24] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser.
2016. Multi-task Sequence to Sequence Learning. In ICLR.

[25] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles
in Ego Networks. In NIPS. 548–556.

[26] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML. 2014–2023.

[27] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding.. In KDD. 1105–1114.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. 701–710.

[29] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. 2017.
Struc2Vec: Learning Node Representations from Structural Identity. In KDD.
385–394.

[30] Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
and Phil Blunsom. 2015. Reasoning about entailment with neural attention. arXiv
preprint arXiv:1509.06664 (2015).

[31] Baoxu Shi and Tim Weninger. 2017. ProjE: Embedding Projection for Knowledge
Graph Completion. In AAAI. 1236–1242.

[32] Yu Shi, Po-Wei Chan, Honglei Zhuang, Huan Gui, and Jiawei Han. 2017. PReP:
Path-Based Relevance from a Probabilistic Perspective in Heterogeneous Infor-
mation Networks. In KDD. 425–434.

[33] Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. 2017. Scene Segmentation
with DAG-Recurrent Neural Networks. T-PAMI (2017).

[34] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
PVLDB 4, 11 (2011), 992–1003.

[35] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In ACL. 1556–1566.

[36] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. CoRR abs/1605.02688 (may 2016).

[37] Cunchao Tu, Zhengyan Zhang, Zhiyuan Liu, and Maosong Sun. 2017. TransNet:
Translation-Based Network Representation Learning for Social Relation Extrac-
tion. In IJCAI. 2864–2870.

[38] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM) 23, 1 (1976), 31–42.

[39] ChiWang, Jiawei Han, Yuntao Jia, Jie Tang, Duo Zhang, Yintao Yu, and Jingyi Guo.
2010. Mining advisor-advisee relationships from research publication networks.
In KDD. 203–212.

[40] Jia Wang, Vincent W Zheng, Zemin Liu, and Kevin Chen-Chuan Chang. 2017.
Topological recurrent neural network for diffusion prediction. Proceedings of The
IEEE International Conference on Data Mining (ICDM) (2017).

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI. 1112–1119.

[42] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-Lehman Neural Machine for
Link Prediction. In KDD. 575–583.

[43] Xiao-Dan Zhu, Parinaz Sobhani, and Hongyu Guo. 2016. DAG-Structured Long
Short-Term Memory for Semantic Compositionality.. In HLT-NAACL. 917–926.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1869

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Interactive Paths Construction
	5 Interactive Paths Embedding
	6 End-to-End Training
	7 Experiments
	7.1 Datasets and Settings
	7.2 Performance Study

	8 Conclusion
	Acknowledgments
	References

